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Abstract. We study the dynamics of spontaneous emulsification of an initially planar oil-water interface
when surfactants are added. The thermodynamic properties of the ternary oil-water-surfactant system
are modeled by a Ginzburg-Landau-type free energy. The lattice Boltzmann method is used to solve
the dynamic equations. The dynamics is found to be governed by a complicated interplay of convection
and diffusion as the two relevant transport mechanisms. As long as the interface is almost flat, we find the
interfacial area to grow first exponentially and then linearly in time. Later finger-like structures form which
grow with a constant velocity. The tip velocity is found to increase roughly linearly with the mobility of
the amphiphile, and to decrease as ν−1/2 with the solvent viscosity ν.

PACS. 82.70.Kj Emulsions and suspensions – 47.20.Dr Surface-tension-driven instability –
83.10.Lk Multiphase flows

1 Introduction

Two immiscible fluids, e.g. oil and water, can be mixed
on mesoscopic length scales by adding surfactants. The
resulting arrangements of oil and water domains can be
hexagonal, lamellar or disordered (microemulsion) [1,2].
The process of transformation from a macroscopically
phase-separated state to a mesoscopically mixed state is
called spontaneous emulsification. The term spontaneous
refers to the fact that no stirring or shaking is required to
start the emulsification process. In this respect, emulsifi-
cation can be viewed as an instability.

Despite its relevance for industrial processes and every-
day life, the understanding of spontaneous emulsification
is rather poor from a physical point of view. All experi-
mental studies [3–10] done so far remain on an empirical
level. Theoretically, the process of spontaneous emulsifica-
tion has been addressed by Sorensen [11] and by Granek,
Ball and Cates [12]. Only the latter study includes the
bending rigidity, which is believed to be essential in sur-
factant systems.

The experimental and theoretical studies mentioned
above give an intuitive picture about the physics of spon-
taneous emulsification. Initially, there are two coexisting
regions of oil and water separated by an almost planar
interface. By adding surfactants, the surface tension of
the oil-water interface is lowered approximately propor-
tional to the concentration of the surfactant at the in-
terface. When the surface tension finally becomes slightly
negative, the interface becomes unstable. This gives rise
to a hydrodynamic instability, controlled by the viscos-
ity ν, the surface tension σ and bending rigidity κ of
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the interface. Standard hydrodynamic stability analy-
sis [13,14] predicts that the deviation h(r; t) of the local
interface position from the initial reference state grows
exponentially, h(k; t) ∝ eλ(k)t, with

λ(k) = − 1
4ν

(σk + κk3) (1)

where k is the wave number of the excited mode. This
behavior cannot last forever. First, because equation (1)
is based on a linear stability analysis, and second, be-
cause the surface tension becomes a dynamic quantity
itself. Since the interfacial area is growing due to the in-
stability, the concentration of surfactant at the interface is
lowered, the surface tension increases again and thus the
driving force decreases. As there is usually a finite concen-
tration of surfactant dissolved in the bulk oil and water
phases, diffusion acts as a transport mechanism to resup-
ply surfactant to the interface. One may therefore expect
a diffusion limited growth of the interface; indeed, this is
the behavior found by Granek, Ball and Cates [12].

In addition, another mechanism may become relevant
— convection. As the unstable interface propagates into
the bulk oil or water regions the surfactants which are
dissolved in the bulk phases may either be “picked up”
by the interface or be convected into the vicinity of the
interface. We will report evidence for convection to be
relevant for spontaneous emulsification.

The situation for spontaneous emulsification has to be
contrasted with other dynamic instabilities like dendritic
growth, where convection can be neglected due to the hy-
drodynamic boundary layer around solid clusters or den-
drites [15].

The purpose of this paper is to elucidate the dynam-
ics of spontaneous emulsification in its initial and late
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stages. Thereby we take both the thermodynamic be-
havior and the complete set of hydrodynamic transport
equations into account. This is done by using the lattice
Boltzmann method [16–23] for the dynamics combined
with a Ginzburg-Landau model [24–26] for the thermody-
namics. We restrict ourselves to two dimensions in order
to minimize the computational effort.

2 The model

As mentioned above, the theoretical modeling has to meet
two challenges. First, one has to get the thermodynamics
of the ternary system oil, water and surfactant right. In
particular, a surfactant concentration-dependent surface
tension of the oil-water interface and its bending rigidity
have to be contained in the model. Second, one has to take
both convection and diffusion as transport mechanisms
into account.

The thermodynamic part can successfully be described
by a Ginzburg-Landau free-energy functional

F [ρ, φ, ψ] = ω

∫
ddx
{
Tρ lnρ+ gφ(∇φ)2 + (φ2 − φ2

b)
2

+ gψ(∇ψ)2 + sψ2 + γ1ψφ
2 + γ2l

2ψ(∇φ)2

+ γ3l
4ψ(∇2φ)2

}
, (2)

which depends on the mass density ρ > 0 of the fluid,
the difference φ of oil and water densities, and the sur-
factant density ψ > 0 [24–26]. The mass density ρ gives
rise to a positive background pressure and does not affect
the phase behavior. It is therefore usually not included in
Ginzburg-Landau theories, but is required in the lattice
Boltzmann approach [23,22] described in Section 3. We
explicitly take into account the length l of the surfactants
in the free energy. The l-dependence of the coefficients
in the free-energy functional has been derived in refer-
ence [27] from a mapping of a “microscopic” spin model,
in which the surfactants are taken to be dipoles of length
l, onto a Ginzburg-Landau theory with a single order pa-
rameter. Here we adopt this result to our three order
parameter model by identifying the appropriate leading
powers of l.

The parameters are chosen such that the equilibrium
state is the lamellar phase not far from oil-water coexis-
tence for an average surfactant concentration of ψ = 0.05:
gφ = 0.5, gψ = 2.0, φb = 0.5, s = 2.0, γ1 = 2.0, γ2 = −4.0,
γ3 = 1.0 and l = 1.2. The background pressure ρT is con-
trolled by T = 0.5, and ω = 0.01 sets the scale of the free
energy.

The dynamics is described by the incompressible
Navier-Stokes equation with kinematic viscosity ν and
pressure p,

∇ · v = 0, (3)

∂tv + v · ∇v = −1
ρ
∇p+ ν∇2v, (4)

and for each of the fields φ and ψ by a convection-diffusion
equation,

∂tφ+ v · ∇φ = Γφ∇2 δF
δφ

, (5)

∂tψ + v · ∇ψ = Γψ∇2 δF
δψ

, (6)

where Γφ and Γψ are the mobilities. Note that it is crucial
to keep the coupling of the convective flow to the diffusion
in equations (5, 6).

A suitable approach for solving such equations nu-
merically while incorporating the correct thermody-
namic behavior was introduced by Orlandini, Swift, and
Yeomans [28,21] using a lattice Boltzmann model. This
method has successfully been applied to amphiphilic sys-
tems in references [29–31]. In Section 3 we give a brief
description of the lattice Boltzmann approach.

The main difficulty in combining the thermodynamics
given by equation (2) and the lattice Boltzmann approach
is to find the equations of state. For an isothermal, ternary
fluid there are three equations of state. Two equations for
the chemical potentials,

µφ =
δF
δφ

and µψ =
δF
δψ

, (7)

which are straightforward to calculate, and one equation
for the pressure, which is not trivial to derive. As interfaces
in the fluid can exert non-isotropic forces, the pressure is
not a scalar, but a tensor Pαβ . Thermodynamics provides
only an expression for the scalar part p0 of Pαβ , which is
given by the usual thermodynamic relation

p0 = −
(
∂F

∂V

)
T

= ρ
δF
δρ

+ φ
δF
δφ

+ ψ
δF
δψ
− f(ρ, φ, ψ). (8)

Here, f(ρ, φ, ψ) is the free energy density, i.e. the inte-
grand in equation (2). Unfortunately there is no formula
known to calculate the complete pressure tensor Pαβ . It
is the requirement of mechanical equilibrium,

∂βPαβ = ρ∂α
δF
δρ

+ φ∂α
δF
δφ

+ ψ∂α
δF
δψ

, (9)

which provides at least a necessary condition for Pαβ [32].
Our procedure to determine Pαβ is as follows. The pres-
sure tensor is written as

Pαβ = p0δαβ + P̃αβ (10)

where p0 is determined by equation (8), and the
anisotropic part P̃αβ is chosen such as to fulfill equa-
tion (9) and to vanish for spatially homogeneous systems.
However, note that equation (9) does not determine P̃αβ
uniquely; an arbitrary tensor Λαβ can be added as long as
its divergence, ∂βΛαβ, vanishes. In practice, we proceed by
making an ansatz for P̃αβ , which includes all powers of the
fields and their derivatives which are allowed for dimen-
sional reasons. This ansatz is inserted into equation (9)
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to determine the unknown coefficients. In general, the re-
sult is not unique, as stated above. The expression for Pαβ
used in our calculations is given explicitly in Appendix A.

On length scales large compared to the width of an
interface, the interface can be viewed as a mathematical
surface with surface tension σ and bending rigidity κ. In
Appendix B, we show how the pressure tensor is related
to the surface tension and the bending rigidity. Thereby
we obtain the surface tension σ and the elastic modulus κ,

σ=ω

∫ ∞
−∞

dz
{

2gφφ̄′2+2gψψ̄′2+2l2γ2ψ̄φ̄
′2+4l4γ3ψ̄φ̄

′′2} ,
(11)

κ = ω

∫ ∞
−∞

dz2l4γ3ψ̄φ̄
′2, (12)

for an almost flat interface with average normal in the
z-direction, whose density profiles are φ̄(z) and ψ̄(z); the
prime denotes differentiation with respect to z. Here it is
assumed that φ̄ and ψ̄ are constant for |z| → ∞.

From equations (11, 12) we can estimate how the
length of the surfactants l affects the surface tension and
bending rigidity purely from dimensional arguments. As-
sume l to be the only relevant length scale near the in-
terface. Then its width is proportional to l, and φ̄′ ∝ φ̄/l.
This leads to a reduction of the surface tension propor-
tional to l due to the γ2 term in equation (11) and a
bending rigidity κ ∝ l3. The latter is the same depen-
dence as described in reference [27] and agrees with the
dependence of the bending rigidity of a thin plate on its
thickness.

The knowledge of the interfacial properties in terms
of σ and κ makes a quantitative comparison both with
models formulated in terms of mathematical surfaces and
with experiments possible. For the parameters chosen
above, the tension and bending rigidity are found to be
σ/ω = −0.0113 and κ/ω = 0.119 by minimization of
equation (2); this leads to an initial instability as given
by equation (1) for all wavelengths larger than 20 lattice
units.

It has been shown in a reference [30] for an one-
order-parameter free energy that the lattice Boltzmann
approach indeed has the same large-scale dynamics as
a mathematical surface controlled by σ and κ, with
values calculated from expressions analogous to equa-
tions (11, 12).

3 The method

To solve the macrodynamics of the multi-phase flow given
by equations (3–6), we use the lattice Boltzmann ap-
proach [23,22]. Within this method, the dynamics is not
defined in terms of the hydrodynamic fields ρ, v, φ and ψ,
but in terms of velocity distributions fi(r, t), gi(r, t) and
hi(r, t) for each of the densities ρ, φ and ψ. fi(r, t) is the
probability density of the field ρ at position r and time t
in the velocity state i with velocity ei. Analogous state-
ments apply for gi(r, t) and hi(r, t). It is at the heart of

the lattice Boltzmann method that only a minimum num-
ber of velocity states is taken into account. Here we work
in two dimensions on a square lattice with n = 9 veloc-
ity states which are the zero velocity (i = 0), the nearest
(i = 1 . . . 4) and next-nearest neighbor (i = 5 . . . 8) vectors
on the square lattice. The dynamics of the lattice Boltz-
mann method is defined by

fi(r + ei, t+ 1)− fi(r, t) = −1
τ

(fi(r, t)− f eq
i (r, t)) ,

(13)

where f eq is the equilibrium distribution and τ is a re-
laxation time [19,20]. Note that the timestep is equal to
unity. This equation is basically the Boltzmann equation
on a lattice for a finite set of velocity states with a BGK
relaxation ansatz for the collision operator [33]. For gi(r, t)
and hi(r, t) analogous equations apply; this introduces two
more equilibrium distributions geq

i and heq
i with relaxation

times τφ and τψ, which are both taken to be 1/2 + θ with
θ = 1/(2

√
3) (see below).

The “macrodynamic” quantities mass density ρ, mo-
mentum density ρv and the densities φ and ψ are defined
within the lattice Boltzmann approach as moments of the
“microscopic” distributions,

ρ(r, t) =
n∑
i=0

fi(r, t), ρ(r, t)v(r, t) =
n∑
i=0

fi(r, t)ei (14)

φ(r, t) =
n∑
i=0

gi(r, t), ψ(r, t) =
n∑
i=0

hi(r, t). (15)

Conditions for the right hand side of equation (13) and
thus for the equilibrium distributions arise from the re-
quirement that these quantities have to be conserved by
the dynamics of equation (13) and its corresponding equa-
tions for gi and hi. The equilibrium distributions f eq

i , geq
i

and heq
i themselves have to fulfill equations (14, 15) when

they are inserted into them instead of fi, gi and hi.
It has been shown in references [21,28] that both the

macrodynamic equations, equations (3–6), and the ther-
modynamic behavior, as given by the free energy (2), are
simulated, if — in addition to equations (14, 15) — the
equilibrium distributions satisfy

n∑
i=0

geq
i ei = φv,

n∑
i=0

heq
i ei = ψv (16)

and

n∑
i=0

f eq
i eiαeiβ = Pαβ + ρvαvβ

n∑
i=0

geq
i eiαeiβ = Γ̃φµφδαβ + φvαvβ ,

n∑
i=0

heq
i eiαeiβ = Γ̃ψµψδαβ + ψvαvβ . (17)
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The latter equations relate the equilibrium distributions
to the thermodynamic equations of state, the pressure ten-
sor Pαβ and the chemical potentials µφ and µψ. Explicit
expressions for f eq

i , geq
i and heq

i are obtained by using an
ansatz for the equilibrium distributions [28,21]. Details
are given in Appendix C.

One time step of the emerging lattice Boltzmann
algorithm consists of four consecutive steps. First, the
macrodynamic quantities v, ρ, φ and ψ are calculated
from the actual distributions fi, gi and hi by using
equations (14, 15). Then the equations of state, equa-
tions (7, A.2) are evaluated. The third step is to de-
termine the equilibrium distributions f eq

i , geq
i and heq

i
according to equation (C.4). Finally, the distributions at
time t+1 are calculated by means of the lattice Boltzmann
timestep (13) for each distribution.

The choice τφ = τψ = 1/2 + θ with θ = 1/(2
√

3) is
crucial to approximate Galilean invariance as closely as
possible on the lattice [21]. Thus we are left with three
microdynamic parameters τ , Γ̃φ and Γ̃ψ which determine
the viscosity ν and the mobilities Γφ and Γψ of the macro-
dynamic equations (3–6). The relations

ν =
1
6

(2τ − 1), Γφ = θΓ̃φ, Γψ = θΓ̃ψ (18)

can be derived from a Chapman-Enskog expansion [34,21].
The mobilities Γφ and Γψ are proportional to the diffusion
constants of the densities φ and ψ as can be seen from
equations (5, 6).

4 Simulations

The process of spontaneous emulsification is studied by
preparing an initially planar oil-water interface parallel
to the x-axis in a two-dimensional system. The direction
normal to the interface is taken to be the z-direction. By a
reduction of γ2 this interface is quenched into the lamellar
phase. However, the interface remains metastable due to
the lack of any perturbations. To start the emulsification
process we perturb the quenched but equilibrated planar
field φ(z) by a tiny capillary wave with amplitude ε = 0.01
and wave number k,

φ(z)→ φ(z + ε sin(kx)) ≈ φ(z) + ε sin(kx)
∂φ(z)
∂z

· (19)

As ε can be regarded to be infinitesimal compared to the
width of the interface of ξ ≈ 3 and the lattice spacing of
unity, there is no need to perturb ψ or v, too.

We choose periodic boundary conditions along the x-
direction and impose forced boundary conditions [35,36]
along the z-direction, with vz = 0, φ = ±φe and ψ = 0.05,
in order to mimic an infinite bulk phase of either oil
(φ = −φe) or water (φ = +φe). Here φe is the equilibrium
value of φ of the bulk oil and water phases for a given sur-
factant concentration ψ. These boundary conditions act
like a reservoir for the surfactants, because an unlimited
amount of surfactant may diffuse from the boundaries into
the system.

0
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-100 0 100
0

60

120

-100 0 100

Fig. 1. Time series of the emulsification process for ν = 0.1
and Γψ = 0.3 θ at times t = 2 × 105, t = 4 × 105, t = 6× 105

and t = 10 × 105 from top left to bottom right. Regions with
φ < 0 are colored black, those with φ > 0 white. The lattice
size is Lx = 128 and Lz = 256.

We use square lattices with Lx = 32 or Lx = 128 lat-
tice sites along the x-direction and Lz = 256 lattice sites
along the z-direction. These sizes were chosen to allow for
an instability according to equation (1) to develop and to
reduce the influence of the boundaries perpendicular to
the interface. Each run was performed over one million
time steps.

In general, the dynamical behavior of a multi-
component fluid for fixed initial and boundary conditions
is governed by its viscosity and diffusion constants. As
we expect the diffusion of the surfactant and the convec-
tion to be important, we probe the system by varying the
viscosity ν and the mobility Γψ, but keep Γφ = 0.1 θ con-
stant.

5 Results

5.1 Phenomenology

The morphology, which develops during the emulsification
process, depends on the kinetic parameters Γψ and ν. In
turn, the dynamics itself is influenced by the morphology,
since the forces, which the interface exerts on the fluid,
depend on its area and curvature. We find two growth
regimes, one for fast diffusion with Γψ > 0.1 θ, and one
for slow diffusion with Γψ < 0.1 θ.

The positions of the oil-water interface for different
times and Γψ = 0.3 θ, ν = 0.1 is shown in Figure 1. After a
finger has formed perpendicular to the interface, the finger
itself becomes unstable and a secondary instability devel-
ops. This behavior is to be expected, because any interface
between bulk-regions of oil and water is unstable after the
quench into the lamellar phase. This result resemble the
experimental observation of finger-like structures, which
occur during spontaneous emulsification [5]. We want to
mention parenthetically that a completely different mech-
anism for spontaneous emulsification, where the oil pene-
trates into the surfactant bilayer of vesicles and lets them
“explode”, has also been observed [10].
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Fig. 2. Position of the interface at times t = 0, t = 2 × 105,
t = 4×105, t = 6×105, t = 8×105 and t = 1×106. The kinetic
parameters are Γψ = 0.1 θ and ν = 0.1. Note the different
scales in the x and z directions. The lattice size is Lx = 32 and
Lz = 256. Only a fraction of the system is displayed in the z
direction.

For low values of the mobility of ψ, i.e. Γψ < 0.1 θ,
and small systems (Lx = 32) always a single finger forms,
which grows perpendicular to the initial interface, see Fig-
ure 2. There are no secondary instabilities, which lead to a
growth in a different direction. We attribute this behavior
to the fact that at low values of Γψ not enough surfactant
diffuses to the interface to build up a secondary insta-
bility. The morphology is thus dynamically stabilized. In
addition, there is a stabilizing effect due to the attractive
interactions between two interfaces [37].

Thus, there is in general a mutual dependence of dy-
namics and morphology which is difficult to disentangle.
Therefore we consider here only the case Γψ < 0.1 θ for
the late stages, where the morphology is approximately
independent of time.

5.2 Initial dynamics

For the initial states, i.e. as long as no overhangs oc-
cur, the entire dynamics can be described by the position
h(x, t) of the interface which is known in differential ge-
ometry as the Monge representation of a surface. Here we
focus on the excess area

∆A(t) =
∫ Lx

0

dx
(√

1 + (∇h(x, t))2 − 1
)

(20)

of the interface compared to the area of the planar inter-
face. We can distinguish two different behaviors of ∆A(t)
for very early and for somewhat later times after the ex-
citation of a capillary wave. The early dynamics of ∆A(t)
is found to be

∆A(t) ∝ eαt, with α ∝ 1
ν

(21)

and α independent of Γψ, see Figures 3 and 4. We find
that the dependence of α on the wave number k, the sur-
face tension σ and the bending rigidity κ agrees qualita-
tively with the prediction of equation (1), i.e. α ∝ 2λ(k).
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t∗104
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Fig. 3. Growth of the excess area ∆A versus time t for Γψ =
0.1 θ and ν = 0.1. For t > 5 × 104 there is a linear growth
∆A(t) ∝ βt. The inset shows a semi-logarithmic plot for the
very early stages, t < 2× 104, where ∆A(t) ∝ exp(αt).
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Fig. 4. Growth exponent α for the very early stages, t <
2 × 104, as a function of the viscosity ν for Γψ = 0.02 θ (◦)
and Γψ = 0.2 θ (×). The solid line shows a fit to a α = α0/ν
behavior with α0 = 3.7 × 10−5. The inset shows that α does
not depend on Γψ (with data for ν = 0.1).

However, α/(2λ(k)) is roughly 2 instead of unity. At later
times, there is a crossover to a linear growth of the excess
area,

∆A(t) ∝ βt, with β ∝ (Γψ)b and b ≈ 1
3
, (22)

compare Figure 5. Despite the fact that the data cover
only about one order of magnitude, a value of b ≥ 1/2
can certainly be ruled out. The dependence of β on the
viscosity ν is the same as for α, i.e. β ∝ 1/ν. The linear
growth behavior, equation (22), ends due to the break-
down of the Monge representation. These observations
support the idea of a hydrodynamic instability, as it is re-
flected by the exponential growth, with a growth constant
inversely proportional to the viscosity ν, and a crossover
to a diffusion controlled behavior, which is linear in time.
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Fig. 5. Linear growth rate β versus the mobility Γψ for ν = 0.1
in a double-logarithmic plot. The solid line is a fit to the power
law β = β0(Γψ)b, which gives b = 0.28 ± 0.01 and β0 = 5.65×
10−4.

Remarkably, we find that ∆A ∝ Γ 1/3
ψ t, whereas one would

expect naively the growth of the interface, d(∆A)/dt, to
be proportional to the flux Γψ∇ψ of surfactants diffusing
towards the interface, and thus ∆A ∝ Γ 1/2

ψ t1/2 (since the
concentration varies on the length scale of the diffusion
length ld ∝ (Γψt)1/2).

Due to different choices of initial conditions, our results
for the initial dynamics cannot be compared directly with
the theory of Granek, Ball and Cates [12]. For a situation,
where the amphiliphile has to diffuse towards the interface
to make σ negative, Granek et al. predict an initial growth
law ∆Ath(t) ∝ Γ

5/4
ψ t3/4 exp(at5/2Γ 3/2

ψ /ν), followed by a
crossover to a linear, diffusion-controlled growth. While
the first, exponential stage of the growth process cer-
tainly depends strongly on the initial conditions, the sec-
ond stage of diffusion-controlled, linear growth seems to
be more universal.

5.3 Late dynamics

At late times, h(x) is no longer defined. The dynamics can
then be characterized by the velocity vt of the “finger”
which advances into the bulk phase. For the remainder of
this paper we restrict our attention to values of Γψ, for
which the instability grows perpendicular to the interface.
Thus the overall shape of the instability can be regarded
to be independent on Γψ and ν. In particular, the finger
has always the same thickness, which can be identified as
the distance between neighboring interfaces in the lamellar
phase. This reflects the fact that we study the dynamics
of the phase transition from oil-water coexistence into the
lamellar phase.

After the initial phase the tip advances with constant
velocity vt, thus its position Z(t) can be fitted accurately
to a Z(t) = vtt + Z0 law, from which vt is determined.
The existence of a stage with constant velocity vt of the tip
indicates that there is a balance between the growth of the

0 0.01 0.02 0.03
Γψ
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6

8

v t
∗1

05

Fig. 6. Velocity of the tip vt as a function of the mobility Γψ
for ν = 0.1. Only those values of Γψ are plotted, for which the
tip advances perpendicular to the initial interface.

interface and the driving capillary force. As the growth of
the interface is an amphiphile-consuming process, whereas
a constant driving force requires a constant concentration
of amphiphiles at the interface, there must be a constant
total flux of amphiphiles to the interface.

This flux can either be due to convection or diffusion.
A visual analysis of typical flow patterns shows that con-
vection is mainly parallel to the interface. Thus diffusion
is the main transport mechanism of amphiphiles to be
considered. The situation is similar to dendritic growth
phenomena [38], where a dendrite growths with constant
velocity into the undercooled melt. For dendritic growth
the velocity is governed by the diffusion of the latent
heat, which is produced during solidification and has to
be transported away from the solid-melt interface in or-
der for solidification to proceed. The temperature field
of dendritic growth, which corresponds to the density ψ
of the amphiphiles, has its largest gradients near the
tip of the dendrite and thus the heat flux is mainly lo-
cated in the vicinity of the tip.

Support for this picture is provided by Figure 8, where
we show the spatial distribution of the absolute value of
the diffusional flux

jd
ψ(x, z) = Γψ|∇µψ(x, z)| (23)

of the amphiphiles. This figure shows that, indeed, diffu-
sion takes place mainly at the front end of the tip and
near the rear interface. In between the tip and the rear
interface, there is almost no diffusion, because there the
amphiphile is already depleted.

As can be expected from this discussion, the tip ve-
locity vt increases as a function of Γψ; unfortunately, the
scatter of the data shown in Figure 6 is too large to al-
low for a more quantitative analysis. We can attribute the
noise in the data to the fact that the shape of the tip is sen-
sitive to the value of Γψ. We conclude from these results
that the diffusion of the surfactant controls the velocity
of the emulsification process also in its late stages.



O. Theissen and G. Gompper: Lattice-Boltzmann study of spontaneous emulsification 97

0.1 1.0
ν

1

2

3

4

v t
∗1

05

Fig. 7. Tip velocity vt as a function of the viscosity ν. The
value of the mobility is Γψ = 0.02 θ. Note that both axes are
logarithmic. The solid line is a fit to a power law, which yields
vt ∝ ν−1/2.

However, there is a crucial difference between sponta-
neous emulsification and dendritic growth. The finger in
the former case is fluid itself, so that convective effects
lead to a dependence of vt on the viscosity ν, which is
found to exhibit a

vt ∝ ν−0.501±0.005 (24)

behavior, see Figure 7. This dependence is much weaker
than what would be expected from a simple Stokes flow
with a constant driving force f, for which the velocity field
is given by

vα(r) =
∫

dr′Oαβ(r− r′)fβ(r′) (25)

where

Oαβ(r) =
1

8πρν|r|

(
δαβ +

rαrβ
|r|2

)
(26)

is the Oseen tensor in three dimensions. The Oseen ten-
sor in two dimensions is more complicated, but shows the
same ν−1 dependence on the viscosity. Therefore all ve-
locities, including vt, would scale as ν−1.

In order to obtain some insight into the transport
mechanisms, we study the total diffusional and convective
fluxes of φ and ψ,

Jc
φ=
∫

dxdz|φ(x, z)v(x, z)|, Jc
ψ=

∫
dxdz|ψ(x, z)v(x, z)|,

(27)

Jd
φ =Γφ

∫
dxdz|∇µφ(x, z)|, Jd

ψ=Γψ

∫
dxdz|∇µψ(x, z)|.

(28)

The total fluxes displayed in Figure 9 where obtained by
averaging over all timesteps, except the initial stage (the
first 2× 105 timesteps).

Fig. 8. Spatial distribution of the absolute value of the diffu-
sional flux of the amphiphiles. This snapshot was taken from
the same run for which the interface is displayed in Figure 2
and corresponds to the latest time shown there. Dark colors
correspond to a high flux, the position of the interface is indi-
cated by the bold grey line.

The diffusional and convective fluxes for both φ and
ψ increase in a similar manner with Γψ, which reflects
the fact that the diffusion of the amphiphiles controls the
dynamics. The convective fluxes as a function of ν obey
the power laws

Jc
φ ∝ ν−0.72±0.02 and Jc

ψ ∝ ν−0.54±0.02 (29)

which again leads to a weaker dependence on ν than for
a Stokes-flow. More surprisingly, the diffusional fluxes Jd

φ

and Jd
ψ depend on the viscosity with approximately the

same power laws. This implies that they are coupled to the
convective motion of their densities. We can only speculate
about the origin of this behavior. One possible explana-
tion is that the convection transports amphiphiles towards
the rear interface, thus increasing the density of the am-
phiphiles in a region where diffusion acts. A second reason
might be that the tip advances faster with decreasing vis-
cosity ν into amphiphile-rich regions, causing a steeper
gradient of the chemical potential. The same reasoning
holds for the fluxes of the oil-water density difference φ.

The magnitude of the fluxes shows that oil and water
are mainly transported by convection. The Peclet number
for φ, which is defined by the ratio of the convective and
the diffusive flux, takes values between 10 and 15. The
Peclet number for the amphiphiles is lower by a factor 2
to 3; this indicates that diffusion is more important for
the amphiphile than for oil and water.

6 Summary and discussion

In this paper we have used a lattice Boltzmann approach
combined with a Ginzburg-Landau free energy to study
the process of spontaneous emulsification. We find the
mixing of oil and water to be dominated by convection.
However, the speed of the emulsification process is con-
trolled in the first place by the diffusion of the amphiphiles
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Fig. 9. Time and volume averages of the fluxes as a function of Γψ and ν. Open symbols correspond to the diffusive fluxes,
closed symbols to convective fluxes. Note that, in (b) and (d), the diffusive fluxes of φ, Jd

φ , are scaled by an extra factor of 10.
The viscosity in (a) and (b) is ν = 0.1, the mobility in (c) and (d) Γψ = 0.02θ.

and thus by Γψ. The influence of the viscosity is less pro-
nounced as in a simple Stokes flow.

We interpret this behavior as a non-trivial coupling of
convection and diffusion, which can be split into three
parts. First, the diffusion of the surfactants to the in-
terface controls the surface tension and thus the driving
force of the emulsification process. Second, this driving
force is balanced by the viscous stresses in the fluid and
causes a convective transport of oil and water. This trans-
port thus increases with Γψ and, due to the convective
part, decreases with ν. The ν dependence is weakened by
the diffusional contributions. Third, there is a feedback
of the convection to the diffusional transport, which makes
the diffusional flux depend on the viscosity ν. Thus, to de-
scribe the emulsification process correctly, it is crucial to
use a three component model, in which the amphiphile
density is explicitly taken into account.

We restricted ourselves to two dimensions in order
to minimize the computational effort. Usually, the di-
mensionality is crucial for multi-phase flows due to the
presence of the Rayleigh instability [14] in d = 3 and
its absence in d = 2. However, in surfactant systems
the surface tension, which is the driving force of the
Rayleigh instability, is very low or even zero. In addition,

surfactants can stabilize cylindrical arrangements of oil
in water and vice versa as indicated by the existence
of a hexagonal phase. Therefore we believe our two-
dimensional simulations to be comparable with experi-
ments, even though the values of the growth rates and
exponents may be different in three dimensions. Indeed,
cylindrical arrangements of oil in water which don’t show
a Rayleigh instability have been observed in spontaneous
emulsification [5].

Compared to dendritic growth phenomena, sponta-
neous emulsification is similar in the respect that dif-
fusion of a field (amphiphile density and temperature,
respectively) leads to the formation of a tip perpendic-
ular to the initial interface, because growth is faster in
regions with larger field gradients. However, there are sev-
eral differences between dendritic growth and spontaneous
emulsification, which prohibit a closer analogy. For den-
dritic growth, convection is irrelevant, the driving force
is due to a phase transition in the bulk and the posi-
tive surface tension has a stabilizing effect. In contrast,
spontaneous emulsification is driven by a negative surface
tension, bending rigidity smoothens the interface at short
length scales, and convection strongly affects the growth
velocity.
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Appendix A: Pressure tensor

The ideal (thermodynamic) part p0 of the pressure tensor
is obtained from equation (8),

p0 = ω{Tρ+ 3φ4 − 2φ2
bφ

2 + 2sψ2 − 2gφφ∇2φ

− gφ(∇φ)2 − 2gψψ∇2ψ − gψ(∇ψ)2

+ 2γ1ψφ
2 − 2γ2φ(∇ψ)(∇φ) − 2γ2ψφ∇2φ

+ 2γ3ψφ∇2∇2φ+ 4γ3φ(∇ψ)(∇∇2φ)

+ 2γ3φ(∇2ψ)(∇2φ)} (A.1)

where irrelevant constant terms have been neglected. As
there is no formula available for the non-ideal part of
the pressure tensor P̃αβ , we proceed by an ansatz con-
structed in the following way. For dimensional reasons,
equations (2, 9) imply that all terms of the pressure ten-
sor proportional to, say, γ2 must be proportional to ψφ2

and of second order in the spatial derivatives. The ansatz
for the γ2 contributions to P̃αβ therefore contains all pos-
sible combinations which meet these requirements, each
with an undetermined coefficient. Using equation (9), we
get a system of equations which relates these coefficients.
Any solution of this system of equations gives a correct
expression for P̃αβ . Each two solution differ by a physi-
cally irrelevant tensor Λαβ, whose divergence is zero. The
expression for the non-ideal part of the pressure tensor
used in this paper is

P̃αβ = ω{2gφ(∂αφ)(∂βφ) + 2gψ(∂αψ)(∂βψ)
+ 2γ2ψ(∂αφ)(∂βφ)

− 2γ3[(∂αψ)(∂βφ)(∇2φ) + (∂βψ)(∂αφ)(∇2φ)]

− 2γ3[ψ(∂αφ)(∂β∇2φ) + ψ(∂βφ)(∂α∇2φ)]

+ 2γ3[ψ(∇2φ)2 + (∇ψ) · (∇φ)(∇2φ)

+ ψ(∇φ) · (∇∇2φ)]δαβ}. (A.2)

Appendix B: Surface tension and bending
rigidity

The connection between Pαβ and σ is well established [39],

σ =
∫

dz (PN(z)− PT(z)), (B.1)

where PN is the normal and PT the tangential component
of the pressure tensor. For an interface with normal in the
z-direction, PN(z) = Pzz(z) and PT(z) = Pxx(z).

The bending rigidity κ has not been determined from
Pαβ so far. Here we show how such an expression can be
derived. Consider an almost flat interface h(x, y) with its
normal in the z-direction. The free energy of this interface
is given by the curvature Hamiltonian, which reads

H[h] =
∫

dxdy
{σ

2
(∇‖h)2 +

κ

2
(∇2
‖h)2

}
(B.2)

to lowest order in h(x, y) [40,41]. Here ∇‖ refers to the
nabla operator in the xy plane. The normal component of
the force, which this interface exerts on the fluid, is

Fz = −δH
δh

=
{
σ∇2
‖ − κ(∇2

‖)
2
}
h(x, y). (B.3)

On the other hand, this force can be calculated directly
from the pressure tensor. The force in z-direction at a
given position in the fluid is ∂βPzβ , which can be obtained
from equation (9); the superposition principle then leads
to the force

Fz =
∫ ∞
−∞

dz∂βPzβ , (B.4)

which the whole interface exerts on the fluid. The two
forces (B.3, B.4) for the same height function h(x, y) of
the interface must be identical. To express equation (B.4)
in terms of h(x, y), φ and ψ are expanded for an almost
planar interface about the equilibrium density profile φ̄(z)
and ψ̄(z) of a flat interface,

φ(x, y, z) ≈ φ̄(z + h(x, y)) ≈ φ̄(z) + φ̄′(z)h(x, y) (B.5)

ψ(x, y, z) ≈ ψ̄(z + h(x, y)) ≈ ψ̄(z) + ψ̄′(z)h(x, y) (B.6)

to lowest order in h, where φ′ = ∂φ/∂z and ψ′ = ∂ψ/∂z.
Equations (B.5, B.6) are inserted into equation (B.4). A
comparison of equations (B.3, B.4) then yields σ and κ as
given in equations (11, 12).

This derivation is not the only possible way to de-
termine σ and κ for a Ginzburg-Landau-type theory.
Previous calculations based on the comparison of the to-
tal Ginzburg-Landau free energy of spheres and cylinders
with the curvature energy [37,42] or on a calculation of
the free energy of capillary waves for both the Ginzburg-
Landau model and the curvature Hamiltonian [43]. Of
course, all three approaches are equivalent.

Appendix C: Equilibrium distributions

Each of the equilibrium distributions f eq
i , geq

i and heq
i

must fulfill equations of the form
n∑
i=0

weq
i = χ,

n∑
i=0

weq
i ei = χv (C.1)

n∑
i=0

weq
i eiαeiβ = Tαβ + χvαvβ (C.2)

where χ is either ρ, φ or ψ, and Tαβ either Pαβ , Γ̃φµφδαβ
or Γ̃ψµψδαβ , respectively. The ansatz used for weq

i on a
two-dimensional square lattice is [20,21]

weq
0 = A(0) + C(0)v2

weq
i = A

(1)
αβeiαeiβ +B(1)eiv + C(1)v2

+D(1)(eiv)2 for i = 1 . . . 4

weq
i =

1
4

(
A

(1)
αβeiαeiβ +B(1)eiv

+C(1)v2 +D(1)(eiv)2
)

for i = 5 . . . 8, (C.3)
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which should be viewed as an expansion of weq
i for

small velocities, which is rotational invariant in the
velocity-dependent terms, and which allows for an pos-
sible anisotropy A(1)

αβ due to a non-isotropic pressure Pαβ .
Higher orders in v or in the anisotropy can be neglected,
because no conditions have to be fulfilled which would re-
quire their presence.

Determining the unknown coefficients of the ansatz
from conditions (C.1) and (C.2), we obtain

weq
0 = χ− 3

4
(Txx + Tyy)−

2
3
χv2

weq
i = A

(1)
αβeiαeiβ +

1
3
χeiv−

1
6
χv2 +

1
2
χ(eiv)2

for i = 1 . . . 4

weq
i =

1
4
A

(1)
αβeiαeiβ +

1
12
χeiv−

1
24
χv2 +

1
8
χ(eiv)2

for i = 5 . . . 8 (C.4)

where

A(1)
xx =

1
8

(3Txx − Tyy) = −A(1)
yy and A(1)

xy = A(1)
yx =

1
2
Txy.
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